proveedor de baterías en todo el mundo
0086 755 84897326
 Editar Traducción


» Blog

¿Las baterías de los coches eléctricos son de iones de litio o de hidruro metálico de níquel??


Types of Batteries

Batteries generally can be classified into different categories and types, que van desde la composición química, tamaño, factor de forma y casos de uso, pero debajo de todos estos hay dos tipos principales de baterías;

Primary Batteries
Secondary Batteries
1. Primary Batteries

Primary batteries are batteries that cannot be recharged once depleted. Primary batteries are made of electrochemical cells whose electrochemical reaction cannot be reversed.

Primary batteries exist in different forms ranging from coin cells to AA batteries. They are commonly used in standalone applications where charging is impractical or impossible. A good example of which is in military grade devices and battery powered equipment. It will be impractical to use rechargeable batteries as recharging a battery will be the last thing in the mind of the soldiers. Primary batteries always have high specific energy and the systems in which they are used are always designed to consume low amount of power to enable the battery last as long as possible.

Some other examples of devices using primary batteries include; Pace makers, Animal trackers, Wrist watches, remote controls and children toys to mention a few.The most popular type of primary batteries are alkaline batteries. They have a high specific energy and are environmentally friendly, cost-effective and do not leak even when fully discharged. They can be stored for several years, have a good safety record and can be carried on an aircraft without being subject to UN Transport and other regulations. The only downside to alkaline batteries is the low load current, which limits its use to devices with low current requirements like remote controls, flashlights and portable entertainment devices.

2. Secondary Batteries

Secondary batteries are batteries with electrochemical cells whose chemical reactions can be reversed by applying a certain voltage to the battery in the reversed direction. Also referred to as rechargeable batteries, secondary cells unlike primary cells can be recharged after the energy on the battery has been used up.

They are typically used in high drain applications and other scenarios where it will be either too expensive or impracticable to use single charge batteries. Small capacity secondary batteries are used to power portable electronic devices like mobile phones, and other gadgets and appliances while heavy-duty batteries are used in powering diverse electric vehicles and other high drain applications like load levelling in electricity generation. They are also used as standalone power sources alongside Inverters to supply electricity. Although the initial cost of acquiring rechargeable batteries is always a whole lot higher than that of primary batteries they are the most cost-effective over the long-term.

Secondary batteries can be further classified into several other types based on their chemistry. This is very important because the chemistry determines some of the attributes of the battery including its specific energy, cycle life, shelf life, and price to mention a few.

There are basically four major chemistries for rechargeable batteries;

De litio-ion(iones de litio)
Nickel Cadmium(Ni-Cd)
Nickel-Metal Hydride(Ni-MH)
1. Nickel-Cadmium Batteries

The nickel–cadmium battery (NiCd battery or NiCad battery) is a type of rechargeable battery which is developed using nickel oxide hydroxide and metallic cadmium as electrodes. Ni-Cd batteries excel at maintaining voltage and holding charge when not in use. Sin embargo, NI-Cd batteries easily fall a victim of the dreaded “memory” effect when a partially charged battery is recharged, lowering the future capacity of the battery.

In comparison with other types of rechargeable cells, Ni-Cd batteries offer good life cycle and performance at low temperatures with a fair capacity but their most significant advantage will be their ability to deliver their full rated capacity at high discharge rates. They are available in different sizes including the sizes used for alkaline batteries, AAA to D. Ni-Cd cells are used individually or assembled in packs of two or more cells. The small packs are used in portable devices, electronics and toys while the bigger ones find application in aircraft starting batteries, Electric vehicles and standby power supply.

Some of the properties of Nickel-Cadmium batteries are listed below.

Specific Energy: 40-60W-h/kg
Energy Density: 50-150 W-h/L
Specific Power: 150W/kg
Charge/discharge efficiency: 70-90%
Self-discharge rate: 10%/mes
Cycle durability/life: 2000ciclos
2. Nickel-Metal Hydride Batteries

Nickel metal hydride (Ni-MH) is another type of chemical configuration used for rechargeable batteries. The chemical reaction at the positive electrode of batteries is similar to that of the nickel–cadmium cell (NiCd), with both battery type using the same nickel oxide hydroxide (NiOOH). Sin embargo, the negative electrodes in Nickel-Metal Hydride use a hydrogen-absorbing alloy instead of cadmium which is used in NiCd batteries

.Batería de Ni-MH

NiMH batteries find application in high drain devices because of their high capacity and energy density. A NiMH battery can possess two to three times the capacity of a NiCd battery of the same size, and its energy density can approach that of a lithium-ion battery. Unlike the NiCd chemistry, batteries based on the NiMH chemistry are not susceptible to the “memory” effect that NiCads experience.

Below are some of the properties of batteries based on the Nickel-metal hydride chemistry;

Specific Energy: 60-120h/kg
Energy Density: 140-300 Wh/L
Specific Power: 250-1000 W/kg
Charge/discharge efficiency: 66% – 92%
Self-discharge rate: 1.3-2.9%/month at 20oC
Cycle Durability/life: 180 -2000
3. Lithium-ion Batteries

Lithium ion batteries are one of the most popular types of rechargeable batteries. They are found in different portable appliances including mobile phones, smart devices and several other battery appliances used at home. They also find applications in aerospace and military applications due to their lightweight nature.

Lithium-ion batteries are a type of rechargeable battery in which lithium ions from the negative electrode migrate to the positive electrode during discharge and migrate back to the negative electrode when the battery is being charged. Li-ion batteries use an intercalated lithium compound as one electrode material, compared to the metallic lithium used in non-rechargeable lithium batteries.

Lithium ion batteries generally possess high energy density, little or no memory effect and low self-discharge compared to other battery types. Their chemistry alongside performance and cost vary across different use cases for example, Li-ion batteries used in handheld electronic devices are usually based on lithium cobalt oxide (LiCoO2) which provides high energy density and low safety risks when damaged while Li-ion batteries based on Lithium iron phosphate which offer a lower energy density are safer due to a reduced likelihood of unfortunate events happening are widely used in powering electric tools and medical equipment. Lithium ion batteries offer the best performance to weight ratio with the lithium sulphur battery offering the highest ratio.

Some of the attributes of lithium ion batteries are listed below;

Specific Energy: 100: 265W-h/kg
Energy Density: 250: 693 W-h/L
Specific Power: 250: 340 W/kg
Charge/discharge percentage: 80-90%
Cycle Durability: 400: 1200 ciclos
Nominal cell voltage: NMC 3.6/3.85V
4. Lead-Acid Batteries

Lead acid batteries are a low-cost reliable power workhorse used in heavy duty applications. They are usually very large and because of their weight, they’re always used in non-portable applications such as solar-panel energy storage, vehicle ignition and lights, backup power and load levelling in power generation/distribution. The lead-acid is the oldest type of rechargeable battery and still very relevant and important into today’s world. Lead acid batteries have very low energy to volume and energy to weight ratios but it has a relatively large power to weight ratio and as a result can supply huge surge currents when needed. These attributes alongside its low cost makes these batteries attractive for use in several high current applications like powering automobile starter motors and for storage in backup power supplies.

Tal vez como también

  • categorías

  • Compartir a un amigo